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Strongly localized gap solitons in diatomic lattices
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It is shown that strongly localized discrete gap solitons may exist in a diatomic chain of particles
interacting via a harmonic and a quartic anharmonic potential. In the framework of the rotating-wave
approximation, several types of such nonlinear modes are found in the limit of large nonlinearity.
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The existence of gaps in the spectrum of linear waves
propagating in crystal lattices with a complex unit cell
is a rather fundamental physical phenomenon in solids.
One of the typical and well-known examples is a fre-
quency gap between the acoustic and optical branches
of the linear spectrum of a diatomic chain. The interest
to the study of the spectrum gaps has been stimulated
also by the recent discovery of three-dimensionally peri-
odic dielectric structures that can exhibit what is called a
“photonic band gap” [1] by analogy with electronic band
gap in semiconductor crystals.

In the linear case, a spectrum gap means that wave
propagation of certain wavelengths is forbidden. Go-
ing to the nonlinear case, one may allow such waves to
propagate in the form of so-called gap solitons [2]. Gap
solitons, being spatially localized nonlinear modes which
exist with the frequencies lying just within the gap fre-
quency band, are a result of balance between weak non-
linearity and dispersion, the latter is essential near the
gap edges. Various properties of gap solitons have been
investigated in respect to their potential applications in
nonlinear optics (see, e.g., Refs. [3-7]), whereas the
instability-induced generation of a pulse train consisting
of gap solitons has recently been shown experimentally
[8] as a novel way to generate a periodic stream of short
optical pulses from a cw signal.

A wider class of gap solitons has been found recently
for one-dimensional diatomic lattices with nonlinearity
introduced either through on-site (substrate) potential [9]
or through nonlinear interparticle interaction in the chain
[10]. These gap modes may be described by a system of
two coupled nonlinear equations, and one class of these
modes is also possible in a monoatomic chain as a result
of the nonlinearity-induced gap in the spectrum band
[11].

Up to now, all the studies of gap solitons assumed
weak nonlinearity effects so that the gap solitons were
described by slowly varying envelope functions being so-
lutions of partial differential equations (see, e.g., Refs.
[5,6,9,10]). However, recently, interest in strongly local-
ized modes in anharmonic lattices has been heightened
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by the identification of a new kind of localized mode in a
homogeneous nonlinear monatomic lattice, the so-called
“intrinsic localized modes” (see Refs. [12-14] and ref-
erences therein). Being spatially localized, the intrinsic
localized mode has the frequency lying above the upper
cutoff frequency of the linear spectrum band and for large
values of the parameter (k4/k2)A2 (where A is the mode
amplitude, k4 and k; are strengths of harmonic and an-
harmonic forces), such a mode is localized only on a few
particles.

The purpose of the present paper is to describe strongly
localized gap modes which are similar to intrinsic local-
ized modes but they exist with the frequency lying within
the linear (wide) frequency gap, so that they may be con-
sidered as a discrete version of the gap solitons. We also
describe the standard intrinsic localized modes in the di-
atomic chain of particles interacting via harmonic and
quartic anharmonic potential.

We consider vibrations of a one-dimensional diatomic
lattice composed of particles (atoms) with masses m and
M (M > m) in which each particle interacts only with
its neighbors. Let u,(t) be the displacement of the nth
particle from its equilibrium position and let k2 and k4 be
nearest-neighbor harmonic and quartic anharmonic po-
tential constants, respectively. The equations of motion
are given by

mnun - kz(un+1 + Up—1 — 2u’n)
+k4[(un+1 - u’n)3 + (un_—l - un)3]9 (1)

where m,, = m for n = 25 +1 and m,, = M for
n = 2j. The linear spectrum of this diatomic chain
has two branches describing acoustic and optical modes,
respectively. These modes are separated by the gap
Aw? = w2, — w2,, where the frequencies w2, = 2ky/m
and w2, = 2ks/M are the gap edge frequencies. The
maximum (cutoff) frequency of the linear spectrum band
is w2, = 2ka(m + M)/mM.

The most interesting part of the spectrum is the vicin-
ity of the maximum value of k (k = w/2) where two
branches with the opposite signs of dispersion are neigh-
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boring. The lower branch corresponds to the mode for
which heavy particles oscillate with the higher ampli-
tudes than the light ones, and at k = 7/2 light particles
are at rest and the heavy ones oscillate with the opposite
phases. For the upper branch, the heavy particles prac-
tically do not move while the light atoms vibrate with
the opposite phases. In the limit M = m the gap in the
linear spectrum disappears.

Substituting the trial solution u,(t) = A®, cos(wt)
into Eq. (1) and using the so-called “rotating-wave” ap-
proximation, i.e., keeping just the terms which are pro-
portional to coswt on the right-hand side of Eq. (1), we
may obtain the set of algebraic equations to real coefli-
cients ®,,. Let us introduce two functions for the odd and
even atomic displacements ®5; = v,, ®2j41 = w,. Then
the system of equations for v,, and w, may be written in
the following form:

— wW?Muv, = ka(wn + Wn_1 — 2vy,)

+Zk4A2 [(wn — v3)? + (wn—1 —va)?], (2)

— wimwy, = kz(Upt1 + vn — 2wy)
3
+Zk4A2 [('Un+1 - wn)s + (U'n - wn)a] s (3)

or

(1—3§)w~=§mn+whn
T [(wn = v)® + (w1 — 0a)*], (4)

w? 1
1-— w_gl Wy = E(Un +’Un+1)

o (v = wa)? + (0n —wn)], (5)

where a = 3ksA%/8k.

Near the edge of the Brillouin zone, the neighboring
atoms of the same kind are vibrating with the oppo-
site phases. Therefore, substituting into Eqs. (4) and
(5) the solutions v, = 0, w, = (—1)"wo or w, = 0,
v, = (—1)"vo we can find how the gap frequencies are
modified by the nonlinearity

1 3 1
w?= — <2k2 + §k4A2w§) = w2, (1 + ang) (6)
and

1 3 1
wi= i (2k-2 + 5k4A2v(2,) = wl, (1 + 501113) . (7)

At the cutoff frequency the atoms in the diatomic chain
oscillate with the minimum wave length. This means that
to find the nonlinear cutoff frequency, one has to look for
solutions in the form w, = wo, v, = vo and Egs. (4) and
(5) are reduced to the following ones:

3
—w?Muvg = 2ka(wo — vo) + §k4A2(w0 — )3,

3
——wzmwo = 2](22('1}0 — ’w()) + ‘2‘k4A2('I}0 — wO)S. (8)
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From Eq. (8) we get the exact result v = —(m/M)wq
and

(9)

The frequencies, which are defined by Egs. (6) and (7),
are the characteristic frequencies of the nonlinear spec-
trum band found in the rotating-wave approximation.

It is important to note that the gap frequencies (6) and
(7) depend on the mode amplitudes, so that it may hap-
pen that they have a cross provided v2 > w2. Thus our
first conclusion to the nonlinear spectrum band is that
the linear gap may be completely suppressed by nonlin-
earity. We would like to mention that this effect seems
opposite to the phenomenon of the nonlinearity-induced
spectrum gap recently described in Ref. [11].

Since the frequency of the nonlinear waves is deter-
mined by the wave amplitude, we introduce as an inde-
pendent variable its deviation from the lower edge of the
linear spectrum band,

3ks (m + M)?

wZ

2= -1 10

‘ way (10)
In this case the system (4) and (5) can be rewritten in
the following form:

_62¢n = %(1/}71_1/}71—1) + (1/)71 _¢n)3 - ("/)n—l +¢n)3a
(11)

Boon = 5 (b = busa) + (Bn = ¥n)® = (Burs + )",

(12)

where 8 = 1 — u — pe?, p = m/M, and we have intro-
duced the new functions ¢, and v, through the rela-
tions v, = (—1)"¢,/+v/a and w, = (—1)"¢,/+/a. Now
strongly localized modes may be determined as those for
which the inequality € > 1 is satisfied provided the lin-
ear gap Aw? is wide enough. Then, for this case, on the
right-hand side of Eq. (11) we can neglect the first lin-
ear term. In a general case, this cannot be done in the
second equation since for u < 1 we have 8 ~ 1, and two
linear terms of Eq. (12) become of the same order. This
case is of the most interest since we are looking for local-
ized modes with the frequencies lying within the linear
spectrum gap, i.e., gap solitons.

To calculate the spatial shapes of the localized modes,
we use Egs. (11) and (12). The parameter € determines
the width of such solutions, so that we can expect that
the modes will be strongly localized provided the condi-
tion € > 1 is fulfilled. From the continuous approxima-
tion [9,10] the shapes of the gap modes are known, i.e., in
a gap soliton the envelope of the heavy-atom vibrations is
of a constant sign whereas light particles oscillate with a
sign-changing envelope. The structure of the gap-soliton
solutions found in Refs. [9,10] does help us to obtain the
corresponding solutions in the limit of strongly localized
modes when the continuous limit approximation is not
valid.

In the case of strongly localized solutions the mode
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may be centered either at heavy or at light particles.
Designating the solution center by the number n = 0, we
will have equations symmetric with respect to n — —n,
defining two different cases.

(i) The mode center is at a heavy particle (symmetric
mode). In this case the first equation of the system (11)
and (12) has the form

— 2o = Y1 + 2(¢h1 — o)°. (13)

(ii) The mode center is at a light particle (asymmet-
ric mode). In this case we have the following two first
equations:

bo=0, —Zhi=1tit(Wi-d)’ -l (19)

The following equations of this system for both cases have
the following form:

¢n+1 = ¢n - Zﬁwn - 2(¢n+1 + "pn)3 + 2(¢n - 1/’11)33
(15)

Y1 = Y —262Pn 41— 2(Ynt1 — bnt1)® +2(¥n + dni1)?,
(16)

Therefore, our system of equations has one unknown vari-
able ¢ in the first case or ¢; in the second one. Applying
for the function ¢, the conditions ¢,1 < ¢, (because
we are looking for localized solutions of these equations)
and ¢,, > 0, we can use a simple iteration method to find
a unique value of ¢¢ (or ¢;) giving the localized mode
pattern.

The results are summing up in the Table I and the
structures of two such solutions are presented in Figs.
1(a) and 1(b). Note that the solution is stronger localized
for smaller u and larger €. The solid and dashed curves in
Figs. 1(a) and 1(b) indicate the envelopes of the particles’
vibration amplitudes which have been analyzed in the
continuum approximation in Ref. [10], and in this limit
the gap solitons may be described by explicit analytical
solutions.

The diatomic lattice we have analyzed in the present
paper may support also the intrinsic localized modes of
a standard type [12-15] with the frequencies lying above
the upper cutoff frequency w,,. To analyze such modes

TABLE I. Structure of the discrete gap solitons.
© € %o ¢ @2 ¢s3 b4
o P P2 s Pa
0.01 10.0 3.3545 1.8083 0.1346 0.0036 0.0001
0.7752 0.8509 0.0733 0.0020
2.9001 0.5770 0.0178 0.0005
0.0 1.1682 0.3012 0.0097 0.0003
0.08 10.0 3.3480 1.8399 0.1735 0.0167 0.0024
0.7704 0.9509 0.3175 0.0572
2.9071 0.6397 0.0446 0.0059
0.0 1.1862 0.5678 0.1332 0.0208
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FIG. 1. Localized patterns corresponding to discrete gap
solitons at g = 0.08 and €? = 10.0: (a) the mode centered at a
light particle, and (b) the mode centered at a heavy particle.
Solid and dashed lines are used to show envelopes of heavy
and light particles, respectively. These curves are close to
the analytical solutions of Ref. [10] found in the continuous
approximation.

analytically we first note that for the modes with the
large frequencies, w? > w2, wi,, we may simplify Egs.
(2) and (3) to the form

'Yan = gn +gn—1 + 2f'n. + (gn +fn)3 + (gn—l + fn)37
(17)

’Yzl‘gn = fn + fri1+2g9n + (fn+1 +gn)3 + (fn +9n)3a
(18)

where

/3 /3
fn = Un Zk4A27 gn = — Wy ZkélAz ) (19)

and v2 = w?M/k,. To find the structure of a localized
mode let us suppose that the center of the mode is cen-
tered at a heavy particle. Then the first equation for the
central particle will be v2fo = 2(g1 + fo) + 2(g91 + fo).
Equations for the next-atom displacements can be rewrit-
ten as 72Hgn = fat1+fn+2g9n+ (fn+1 +g'n)3+ (fn +gn)3;
from there we find v,,+; knowing v,, and w,, with the help
of the relation

72fn+1 = gn+l+gn+2fn+1+(fn+l +gn+1)3+(gn+fn+1)35
(20)

and gn41 through g, and f,,1. Thus the only unknown
variable is f, and we can find it using iteration method
as in the previous case. The results are summed up in
Table II and one of the modes is shown in Fig. 2. The
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TABLE II. Structure of the intrinsic localized modes in
the diatomic chain.

7 ¥? fo f1 f2 fs
g1 g2 g3

0.5 10.0 0.3814 0.1450 0.0050 0.0002

0.5949 0.0412 0.0017

0.1 30.0 0.0604 0.0289 0.0011 0.0000

0.5816 0.0302 0.0011

0.8 10.0 0.7377 0.1126 0.0023 0.0000

0.5932 0.0195 0.0004

mode pattern shown in Fig. 2 looks very much like the
intrinsic localized mode of Sievers and Takeno [12], but it
exists in a diatomic chain composed of the atoms of two
different kinds. Such kinds of modes have been recently
observed in direct numerical simulations by Aoki [16].
At last, we would like to note that in the diatomic
chain one more type of nonlinear mode may exist. In-
deed, when the effects of nonlinearity become large in
a diatomic lattice with a relatively small ratio of parti-
cle masses, the linear spectrum gap may be suppressed
by nonlinearity. This means that instead of spatially lo-
calized modes we may obtain modes on a nonvanishing
background, i.e., in fact dark gap solitons. These dark
solitons (or kink-profile modes) are somehow similar to
the modes recently found in a monoatomic chain [17].
In conclusion, we have shown analytically that strongly
localized nonlinear modes with the frequencies lying
within the gap of the linear spectrum band are possible
in a diatomic chain of particles interacting via harmonic
and quartic anharmonic interatomic potential. We have
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FIG. 2. Localized pattern corresponding to intrinsic lo-

calized modes in the diatomic chain at g = 0.5 and 42 = 10.0
(the upper mode in Table II). )

found such solutions in the rotating-wave approximation,
and we have shown that they may be treated as a discrete
version of gap solitons.
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